|ISOLATING SOURCES OF DISENTANGLEMENT IN VARIATIONAL AUTOENCODERS
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Variational autoencoders naturally discover dis-
entangled representations. To understand this
behavior, we explore a refined decomposition
of the KL regularization term in VAEs.

We can amplify the source of disentanglement
in VAEs which results 1n an improved algo-
rithm with the same number of hyperparam-

eters as the 5-VAE. We call it 3-TCVAE.

Quantifying disentanglement 1s hard, and exist-
ing approaches are mostly ad hoc. We design a
new measure rooted in information theory.

BACKGROUND

The penalized VAE objective can be written using
the evidence lower bound (ELBO):
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- 3 =1 — Standard VAE objective.

-8 > 1 — [B-VAE [1] for disentangling. Reliable
1in practice but not explicitly analyzed.
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NOTION OF DISENTANGLEMENT

Each dimension of a disentangled representation
should:

(1) Represent a different factor of variation in the data.

(2) Be able to be changed independently of the other
dimensions.

It 1s conjectured the following may be important:

(1) Mutual information between the latent variables
and the data.

(2) Independence between the latent variables.
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DECOMPOSITION BREAKDOWN

The ELBO objective decreases all three terms:

@ Mutual information between the training data
and the latent variables [2].

@ Total correlation (TC) between the latent vari-
ables. A measure of statistical dependence.

Dimension-wise KL. Simple regularization act-
ing on each dimension of the representation.

MINIBATCH-BASED ESTIMATION

We can train with arbitrary weights on each term it
we can stochastically estimate log g(z) and log q(z;).

Problem. Evaluation of ¢(z) depends on full data.

Solution. Estimate ¢(z) based on the current mini-
batch, and weight appropriately. Inspired by impor-
tance sampling.
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where z(n;) is a sample from q(z|n;)

SPECIAL CASE: 3-TCVAE

We designate a special case of the decomposition
as a meaningful algorithm for learning disentangled
representations, the 3-TCVAE objective:
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With 5 > 1, this should encourage the representa-
tion to more disentangled while preserving informa-
tion about the data.

Preliminary experiments indicate that tuning the

weights on either @ or 111 do not have as much ot
an effect for learning disentangled representations.

@ Total Correlation @ Dimension-wise KL

MEASURING DISENTANGLEMENT

If we have a set of latent variables {z;} and set of
known factors {v;}, then we can use the empirical
mutual information [,,(z;; v;) to quantize how well
a latent variable z; reflects a ground truth factor vy,.
The full metric we call mutual information

gap (MIG) 1s
1 1
s H(v) In(z00; vk) — ]H;?X[ Wz (1)

where j¥) = argmax ; [,,(z;; vx) and K is the num-
ber of known factors.
The gap encourages two important properties:

e Axis-alignment of the representation.
e Compactness of the representation.

QUANTITATIVE COMPARISONS
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Figure: Distribution of disentanglement score
(MIGQG) for representation learning algorithms.

DISENTANGLED VS. INDEPENDENT
REPRESENTATIONS

Disentanglement vs. TC (dSprites)
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Disentanglement vs. TC (3D Faces)
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Figure: Scatter plots of the average MIG and TC per
value of (3. Larger circles indicate a higher (.

QUALITATIVE RESULTS
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