

Overview

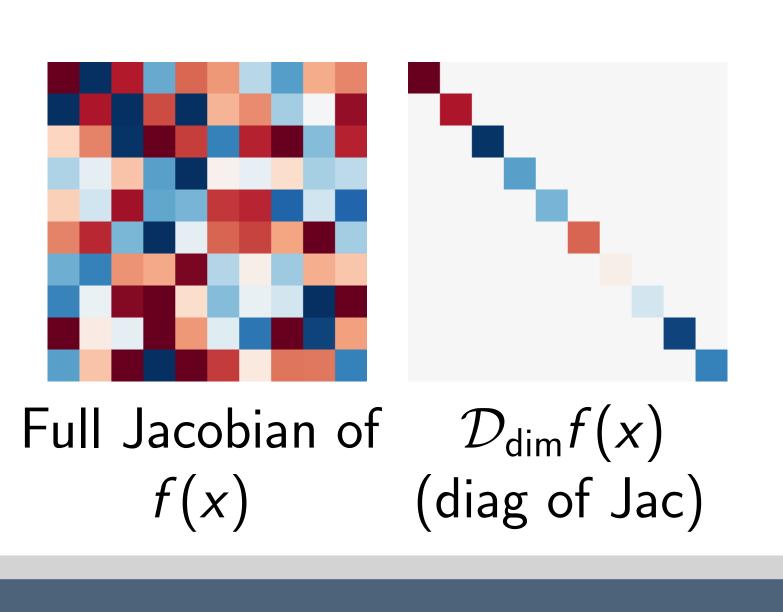
Given $f : \mathbb{R}^d \to \mathbb{R}^d$, we want its *dimension-wise* k-th order derivatives:

$$\mathcal{D}_{\dim}^k f(x) := \left[rac{\partial^k f_1(x)}{\partial x_1^k} \cdots rac{\partial^k f_d(x)}{\partial x_d^k}
ight]^T \in \mathbb{R}$$

- Example: divergence operator $\nabla \cdot f := tr(\mathcal{D}_{dim}f)$.
- Cost scales with D for general networks (same as full Jacobian), because backprop only gives one row at a time.
- We introduce HollowNets, which let us evaluate dimensionwise derivatives for same cost regardless of the dimension d.

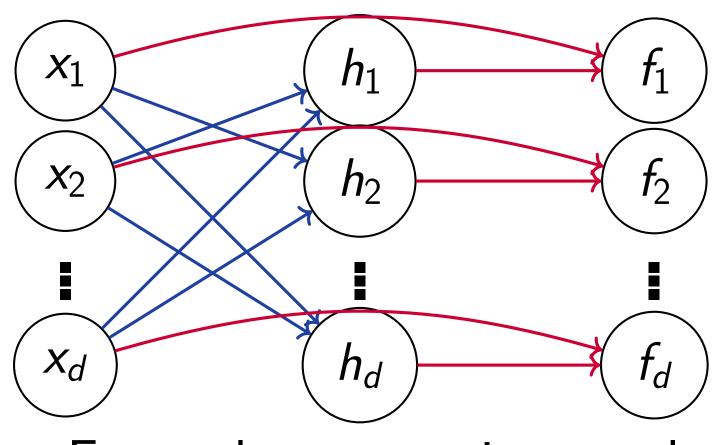
Applications in:

- Solving fixed-point problems.
- II. Continuous-time generative modeling.
- III. Partial differential equations.



HollowNet Architecture

Dimension-wise derivatives can be efficiently computed for restricted architectures:



Forward computation graph

Interactions

 $h_i = c_i(x_{-i})$. $c_i : \mathbb{R} \to \mathbb{R}^{d_h}$ The *i*-th hidden state depends on all inputs except the *i*-th input dimension. The conditioner network has a **hollow** Jacobian.

Per-Dim Transform

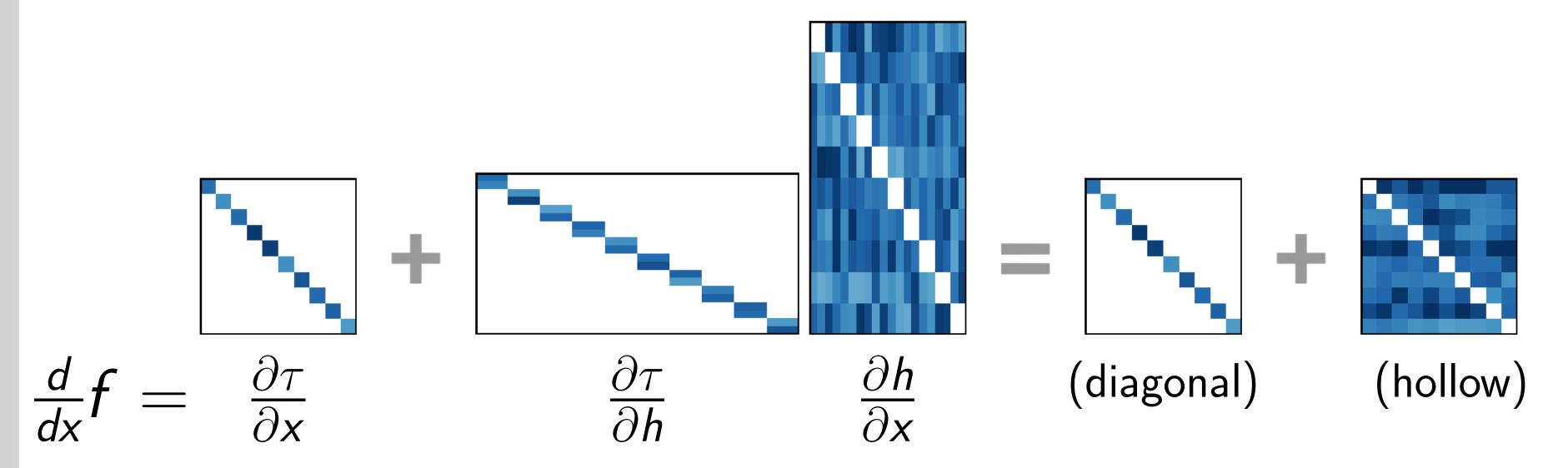
 $f_i(x) = \tau_i(x_i, h_i)$. $\tau_i : \mathbb{R}^{d_h+1} \to \mathbb{R}$ outputs the *i*-th dimension given the concatenated vector. The transformer network has diagonal partial Jacobians.

Neural Networks with Cheap Differential Operators Ricky T. Q. Chen and David Duvenaud

University of Toronto, Vector Institute

Modified Backward Computation Graph

Full Jacobian factors into diagonal and hollow matrices:



Can get exact gradients efficiently with modified backwards pass:

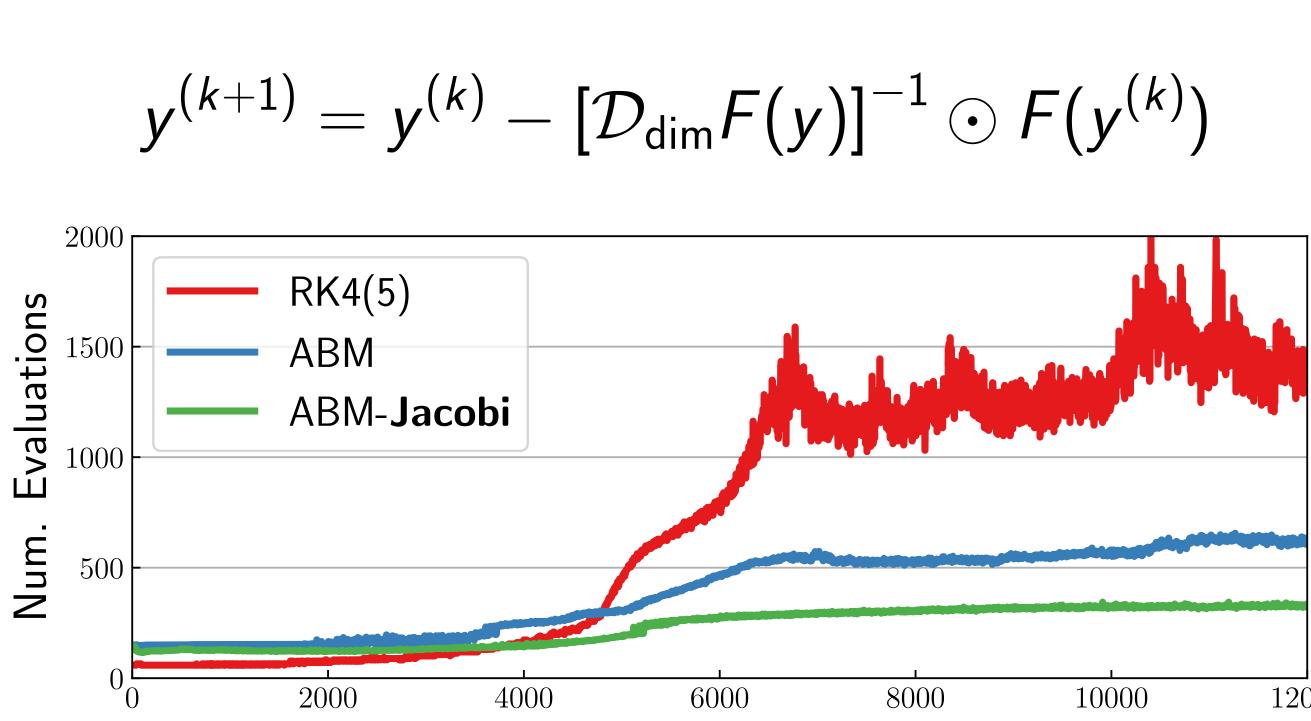
Let \hat{h} be stop_gradient(h) and $f = au(x, \hat{h})$, so $\frac{\partial f_i(x)}{\partial x_i}$ $\frac{\partial \hat{f}_i(x)}{\partial f_i(x_i, \hat{h}_i)} = \frac{\partial \tau_i(x_i, \hat{h}_i)}{\partial \tau_i(x_i, \hat{h}_i)}$ if i = j ∂x_i ∂x_i if $i \neq j$

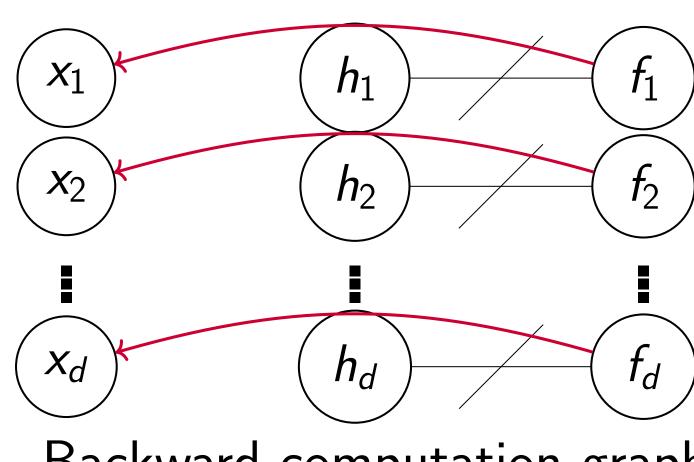
App I: Implicit ODE Solvers for Stiff Equations

Implicit ODE solvers need to solve an optimization in inner loop. General idea: replace Newton-Raphson

$$y^{(k+1)} = y^{(k)} - \left[\frac{\partial F(y^{(k)})}{\partial y^{(k)}}\right]^{-1} F(y^{(k)})$$

with Jacobi-Newton:





Backward computation graph

$$_{\mathsf{m}}F(y)]^{-1}\odot F(y^{(k)})$$

12000Training Iteration

Jacobi-Newton Implicit Solver > Implicit Solver > Explicit Solver

App II: Continuous Normalizing Flows

lf (See Continuous Normalizing Flows section in "Neural ODEs") Table: Evidence lower bound and negative log-likelihood.

Model

VAE

Planar

IAF

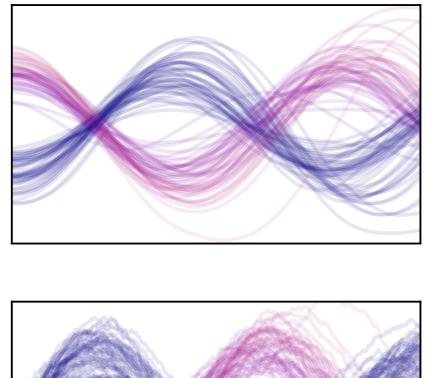
Sylvester

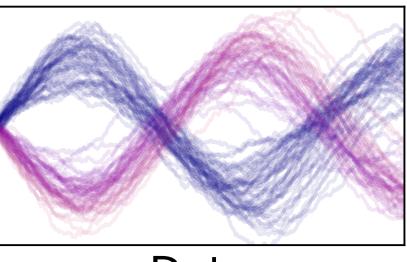
FFJORD (Stochas

Hollow-CNF (Our

Exact trace computation converges faster and results in easier to solve dynamical systems than stochastic trace estimation.

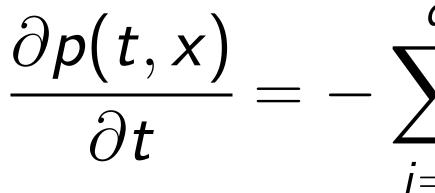
App III: Learning Stochastic Differential Equations





Data

Idea: match left- and right-hand-side of the Fokker-Planck equation, which describes the change in density.



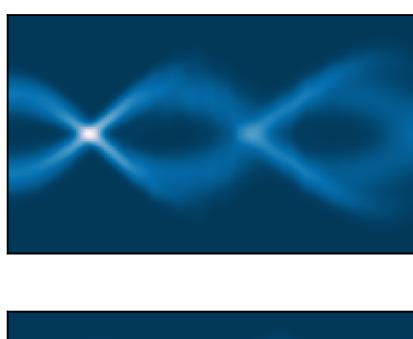
References

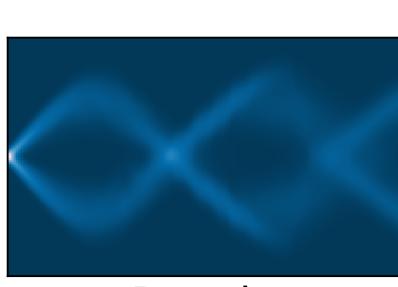
Germain et al. "MADE: Masked Autoencoder for Distribution Estimation." (2015) Huang et al. "Neural Autoregressive Flows." (2018) Chen et al. "Neural Ordinary Differential Equations." (2018)

$\frac{dx}{dt} = f(t, x)$, then	$\frac{\partial \log p(x)}{\partial t} = -\operatorname{tr}$	$\left(\frac{\partial f}{\partial x}\right)$.
----------------------------------	--	--

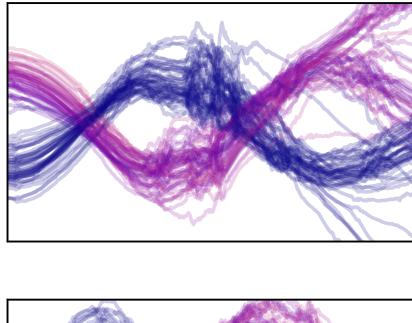
	MNIST		Omniglot	
	-ELBO ↓	$NLL\downarrow$	-ELBO ↓	$NLL\downarrow$
	-86.55	82.14	-104.28	97.25
	-86.06	81.91	-102.65	96.04
	-84.20	80.79	-102.41	96.08
	-83.32	80.22	-99.00	93.77
astic trace)	-82.82		-98.33	
urs; exact trace)	-82.37	80.22	-97.42	93.90

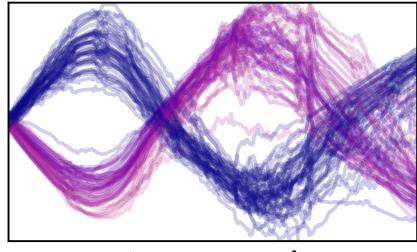
dx(t) = f(x(t), t)dt + g(x(t), t)dW





Density





Learned

 $\frac{\partial p(t,x)}{\partial t} = -\sum_{i=1}^{d} \frac{\partial}{\partial x_{i}} [f_{i}(t,x)p(t,x)] + \frac{1}{2} \sum_{i=1}^{d} \frac{\partial^{2}}{\partial x_{i}^{2}} [g_{ii}^{2}(t,x)p(t,x)]$