Self-Tuning Stochastic Optimization with
Curvature-Aware Gradient Filtering

Ricky T. Q. Chen, Dami Choi, Lukas Balles
David Duvenaud, Philipp Hennig

SGD fixed step
—— SGD w/ momentum "FQ/7V6
—— Meka fixed step ViRl
Meka adaptive step

University of Toronto and Max Planck Institute

Gradient noise — Diffusion

SGD fixed step SGD fixed step SGD fixed step
—— SGD w/ momentum —— SGD w/ momentum —— SGD w/ momentum

i s =

Larger gradient noise

Gradient noise — Diffusion

SGD fixed step SGD fixed step SGD fixed step
—— SGD w/ momentum —— SGD w/ momentum —— SGD w/ momentum

i s =

Larger gradient noise

Roger Grosse ooo
L3l @RogerGrosse

90% of all confusion about neural net training dynamics
would vanish if everyone got used to thinking about and
measuring neural net Jacobians, Hessians, Fisher
information matrices, etc.

Gradient noise — Diffusion

SGD fixed step SGD fixed step SGD fixed step
—— SGD w/ momentum —— SGD w/ momentum —— SGD w/ momentum

i s =

Larger gradient noise

Can we create a self-controlled | self-tuning optimizer?

- Autodiff for estimating curvature and variance.
- Bayesian Inference within a gradient dynamics model.
- Automatic step sizes based on exploration vs exploitation.

Gradient Estimation as Posterior Inference

What this work is about:
View gradient observations as a dynamical system.

Infer full gradient from history of stochastic observations.

£ Eeiiil VoEz [f(0t41,)]
Vof(0:, 1) i \v?f(eﬂ—l,) ;:(c:l::(ent? wdiCtion?
, T
NG / fso VoEq [f (042, 2)]

b VoE, [f (61,)]

Gradient Estimation as Posterior Inference
What this work is about:

View gradient observations as a dynamical system.

Infer full gradient from history of stochastic observations.

VoEg [f (0141,)]
What this work is not about: Track wdicﬁon?

Inferring limiting distributi f SGD gradient?
nferring limiting distribution o .
Vol [f(9t+27 x)]

Bayesian neural networks. VoE, [f (6, x)]

Constructing a Linear-Gaussian Dynamics Models

Notation:

0

9t—|—1

+0¢11

+04 \
Ot 12

Define: f 2 VyE, Lf (0,)]

Based on a Taylor expansion of the gradient:

V= Vi1 + Hiop

Constructing a Linear-Gaussian Dynamics Models

Notation:

Model uncertainty from update:
Orv1 46,41

+5t/ \6 ViV fi1 ~ N(V i1 + Bior—1, Q1)
t+2 /\74

0
Minibatch Variance of minibatch
Define: ft 2 VoE, [f(gt7 x)] Hessian-vector product Hessian-vector product

Constructing a Linear-Gaussian Dynamics Models

Notation:

0

Orv1 46,41

+04 \
Ot 12

Define: f 2 VyE, Lf (0,)]

Model uncertainty from update:

ViV i1 ~N(Vfi_1 + Bioi—1, Q¢)
/\74

Minibatch Variance of minibatch
Hessian-vector product Hessian-vector product

Model uncertainty from stochastic gradients:

gt|vft ~ N(Vft, Zt)

\ Minibatch Variance of minibatch
gradient gradient

Gradient Filtering for Online Variance Reduction

Y 0 e oy, Qs < A VIV ~N(Vfio1+ Bibi_1,Qy)
9t|V fi ~ N(V f, %)

L
®@ 0 &

Gradient Filtering for Online Variance Reduction

a\/\ @ —————————— ViV fie1 ~ N(V fi—1 + Biop—1, Q¢)
0 @ GV i ~ N(TF,5)
e 0 ©

N
® 0 &

Gradient Filtering for Online Variance Reduction

VilVfio1 ~ N(Vfio1 + Bede—1, Q1)
9elV fr ~ N(V fi, 34)

We can perform exact inference:

- Filtering p(vft|gt, fe 790)

- (obtain low-variance gradients)

Gradient Filtering for Online Variance Reduction

VilVfio1 ~ N(Vfio1 + Bede—1, Q1)
9elV fr ~ N(V fi, 34)

SGD fixed step
—— SGD w/ momentum
—— Meka fixed step

We can perform exact inference:

- Filtering p(vft|9t, fe 790) Y._
l

(obtain low-variance gradients)

Gradient Filtering for Online Variance Reduction

Computing p(V ft|g, - . ., go) amounts to Kalman Filtering.

my = my—1 4 -Bili—1, B = B Q-1
Ki=P (P +Z)~ "
my = (I — Kp)m; + Kigy, P.=(I-K)P;(I-K)" + K, 3. K}

where m and P; are defined:

V fi \ 91:t,01:4—1 NN(mt, Pt)

Gradient Filtering for Online Variance Reduction

Computing p(V ft|g, - . ., go) amounts to Kalman Filtering.

m, = mg—i +-Byds—1, B = By, + Q-1
Ky =P (P + Zt)_l
my = (I — Ky)m; + Kg, P.=(I-K)P;(I-K)" + K, 3. K}

[Momentum-like update }

where m and P; are defined:

V fi \ 91:t,01:4—1 NN(mt, Pt)

Gradient Filtering for Online Variance Reduction

Computing p(V ft|g, - . ., go) amounts to Kalman Filtering.

mt_ = my_1 + 5,0, Ly Pt_ = P14+ Q-1
Ki=P (P +Z)~ "
my = (I — Ky)m; + Kg, P.=(I-K)P;(I-K)" + K, 3. K}

{ Momentum-like update }

where m and P; are defined:

V fi \ 91:t,01:4—1 NN(mt, Pt)

Gradient Filtering for Online Variance Reduction

Computing p(V ft|g, - . ., go) amounts to Kalman Filtering.

my = my_1 + B0, 1, Py = P14+ Qi1

Ky = P (B "‘Et)_l

my = (I — Ky)m; + Kg, P.=(I-K)P;(I-K)" + K, 3. K}
4 N

Momentum-like update
-)

More weight on new where m and P; are defined:

gradient if its variance is
relatively smaller vft | 91:t; O1:t—1 N(mt7 Pt)

- J

Gradient Filtering for Online Variance Reduction

Computing p(V ft|g, - . ., go) amounts to Kalman Filtering.

my = mi—1 + Boy—1, P =PF_1+ Q¢
—(D— i
— — i iy T
my = (I — Kt)mt + th, Pt = (I — Kt)Pt (I — Kt) + KtZth
4 N
___________________ _ Check out “Implicit Gradient
Momentum-like update Transport” (Arnold et al.)
-)
N
More weight on new where m and P; are defined:

gradient if its variance is

relatively smaller
- J

V fi | G1:t,01:4—1 ~ N(mt, Pt)

Estimating Variance with AutoDiff
ViV fi—1 ~ N(V fi—1 + Bibs—1, Q1)

9e|V fr ~ N(V ft, 24)

Quantities in blue are computed via auto-vectorized automatic differentiation.

Variances are estimated using a minibatch of gradients (or HVPs).

In various autodiff frameworks:

- JAX: jax.vmap
- Tensorflow: tf.vectorized_map
- PyTorch (incoming v1.8.0): torch.vmap

e N
e.g. in JAX:
var(vmap(grad(loss_fn(params, batch))))
N J
e N

-

For simplicity, Qt and Et are set to scalars.

J

Adaptive Step Sizes through Acquisition Functions

(575 = — Ot
Q: Infer step size?

Adaptive Step Sizes through Acquisition Functions

Use estimated quantities like curvature, gradient, variances...

575 = — Ot

Q: Infer step size?

Adaptive Step Sizes through Acquisition Functions

Use estimated quantities like curvature, gradient, variances...

—®— Quadratic Mean/Std

Step 1: Construct a 1D
Gaussian Process (in the
descent direction).

575 = — Ot

Estimated f(6 + ad)

Q: Infer step size? q

v

Adaptive Step Sizes through Acquisition Functions

Use estimated quantities like curvature, gradient, variances...

—®— Quadratic Mean/Std

Step 1: Construct a 1D
Gaussian Process (in the
descent direction).

575 = — Ot

Estimated f(6 + ad)

Q: Infer step size? q

«

=@ Quadratic Mean/Std
—@— Expected Improvement
—®— Prob. of Improvement

Step 2: Trade-off
automatically between
exploration and exploitation.

Estimated f(6 +)

Does it work?

Preliminary testing:

Noisy quadratic (toy):

SGD (Ir=0.01)

10?
=~ SGD (Ir=0.001)
SGD (adaptive)
o 10! #4|=—— GD (Ir=0.01)
= —— GD (adaptive)
g —— Meka (Ir=0.01)
= 10° — = Meka (adaptive)
-8
2107t
> e T8
W s TN

1072} momom s o UIDRAL

0 200 400 600 800 1000
Num steps

Does it work?

Preliminary testing:

Noisy quadratic (toy):

Function Value

—— SGD (Ir=0.01)
—— SGD (Ir=0.001)
~—— SGD (adaptive)
L g — 6D (r=0.01)

| == GD (adaptive)
= Meka (Ir=0.01)
1%/ == Meka (adaptive)

~~~~~~~~~

=

200 400 600 800 1000
Num steps

Gradient estimates are good:
(CIFAR10)

10’

/"W‘ww\

— ||V gl

10°

L, Norm

10-1 E—— HVft_mt“

00 05 10 15 20 25
Training Iteration .




Does |t WO rk? Noisy quadratic (toy): Gradient estimates are good:

(CIFAR10)
102 —— SGD (Ir=0.01) ;
B ——— SGD (Ir=0.001)
H H H . SGD (adaptive) 10’ {
Prellmlnary teStIng. o 10! 1 /— @b (r=0.01)
= : —— GD (adaptive) |
g —— Meka (Ir=0.01) € |
= 100 o |
o = 100;
Y10 L =~
O | ||V = gt
L T s 10-1 L™ [IVfe—md||
e 00 05 1.0 15 20 25
0 200 400 600 800 1000 Training Iteration %10
Num steps
Uncertainty-based 1o BINIST CIRAR-10
step sizes are Y,
good: 3 10%
o
C
£ 107
E 10-3 1071t
-4 L L s . L " L . L L
1078 1 2 3 4 5 6 0 1 2 3 4 5 6
Training iterations ~ x10* Training iterations ~ x10*
------ QuadraticMin c=0.1 — Plc=2.0 - Pl ¢c=0.5

------ QuadraticMin c=0.01 — Plc=1.0 Plc=0.1




Does it work?

But on neural network training:

ResNet-32 on CIFAR-10

MLP on MNIST CNN on CIFAR-10
10° 100
oy 1071 0 X w
w0 wn 10~ wn
L . S g
c 107 < c
E -é 10-2 ot E
10-3 (= %Mh oy
-4 -3 2
107 1 2 3 4 5 6 1070 0.5 1.0 1.5 2.0 0.0
Training iteration x10% Training iteration x10°
e SGD @ Momentum —&— Meka -4 Meka (AdaptivelLR)

05 10 15
Training iteration




Why Not?

We can self-diagnose using quantities estimating during training:

i
"m°|:° 102
o=
&
qJ .
15 - kil —— Adaptive after 0
- . 4] |——Adaptive after 10*
© \ J
g Adaptive after 2 x 10*
O 100 Adaptive after 3 x 104

Adaptive after 4 x 10*

Adaptive after 5 x 10%

Adaptive after 6 x 10*
—— Adaptive after 10°

S
)
vl

Q
0
S

Test Accuracy Gradient Variance

Step size (o)

0.00 025 050 075 1.00 125 150 175 2,00 %%00 025 050 075 1.00 1.25 1.50 175  2.00
Num steps x10° Num steps x10°

- We dive into high-variance and high-curvature regions (because we can).

- Resulting in small step sizes and bad minima (because they exist).



Summary

- Build training dynamics model, with AD-estimated quantities.
- Perform inference, choose an acquisition function.
- Gol

Problems we saw:

- Model parameters are stochastic.
- Acquisition function has short-horizon bias.



Summary

- Build training dynamics model, with AD-estimated quantities.
- Perform inference, choose an acquisition function.
- Gol

Amazing co-authors:

Dami Choi Lukas Balles David Duvenaud Philipp Hennig



