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90% of all confusion about neural net training dynamics
would vanish if everyone got used to thinking about and
measuring neural net Jacobians, Hessians, Fisher
information matrices, etc.
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Can we create a self-controlled | self-tuning optimizer?

- Autodiff for estimating curvature and variance.
- Bayesian Inference within a gradient dynamics model.
- Automatic step sizes based on exploration vs exploitation.



Gradient Estimation as Posterior Inference

What this work is about:
View gradient observations as a dynamical system.

Infer full gradient from history of stochastic observations.
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Gradient Estimation as Posterior Inference
What this work is about:

View gradient observations as a dynamical system.

Infer full gradient from history of stochastic observations.
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What this work is not about: Track wdicﬁon?
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Constructing a Linear-Gaussian Dynamics Models

Notation:
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Define: f 2 VyE, Lf (0, )]

Based on a Taylor expansion of the gradient:

V= Vi1 + Hiop



Constructing a Linear-Gaussian Dynamics Models

Notation:

Model uncertainty from update:
Orv1 46,41
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Constructing a Linear-Gaussian Dynamics Models

Notation:
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Define: f 2 VyE, Lf (0, )]

Model uncertainty from update:

ViV i1 ~N(Vfi_1 + Bioi—1, Q¢)
/\74

Minibatch Variance of minibatch
Hessian-vector product Hessian-vector product

Model uncertainty from stochastic gradients:

gt|vft ~ N(Vft, Zt)

\ Minibatch Variance of minibatch
gradient gradient




Gradient Filtering for Online Variance Reduction

Y 0 e oy, Qs < A VIV ~N(Vfio1+ Bibi_1,Qy)
9t|V fi ~ N(V f, %)

L
®@ 0 &



Gradient Filtering for Online Variance Reduction

a\/\ @ —————————— ViV fie1 ~ N(V fi—1 + Biop—1, Q¢)
0 @ GV i ~ N(TF,5)
e 0 ©

N
® 0 &




Gradient Filtering for Online Variance Reduction

VilVfio1 ~ N(Vfio1 + Bede—1, Q1)
9elV fr ~ N(V fi, 34)

We can perform exact inference:
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- (obtain low-variance gradients)



Gradient Filtering for Online Variance Reduction

VilVfio1 ~ N(Vfio1 + Bede—1, Q1)
9elV fr ~ N(V fi, 34)

SGD fixed step
—— SGD w/ momentum
—— Meka fixed step

We can perform exact inference:

- Filtering p(vft|9t, fe 790) Y._
l

(obtain low-variance gradients)



Gradient Filtering for Online Variance Reduction

Computing p(V ft|g, - . ., go) amounts to Kalman Filtering.
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where m and P; are defined:
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Gradient Filtering for Online Variance Reduction

Computing p(V ft|g, - . ., go) amounts to Kalman Filtering.

my = my_1 + B0, 1, Py = P14+ Qi1

Ky = P (B "‘Et)_l
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Momentum-like update
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More weight on new where m and P; are defined:

gradient if its variance is
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Gradient Filtering for Online Variance Reduction

Computing p(V ft|g, - . ., go) amounts to Kalman Filtering.

my = mi—1 + Boy—1, P =PF_1+ Q¢
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my = (I — Kt)mt + th, Pt = (I — Kt)Pt (I — Kt) + KtZth
4 N
___________________ _ Check out “Implicit Gradient
Momentum-like update Transport” (Arnold et al.)
- )
N
More weight on new where m and P; are defined:

gradient if its variance is
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Estimating Variance with AutoDiff
ViV fi—1 ~ N(V fi—1 + Bibs—1, Q1)

9e|V fr ~ N(V ft, 24)

Quantities in blue are computed via auto-vectorized automatic differentiation.

Variances are estimated using a minibatch of gradients (or HVPs).

In various autodiff frameworks:

- JAX: jax.vmap
- Tensorflow: tf.vectorized_map
- PyTorch (incoming v1.8.0): torch.vmap

e N
e.g. in JAX:
var(vmap(grad(loss_fn(params, batch))))
N J
e N

-

For simplicity, Qt and Et are set to scalars.
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Adaptive Step Sizes through Acquisition Functions
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Q: Infer step size?
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Use estimated quantities like curvature, gradient, variances...
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Adaptive Step Sizes through Acquisition Functions

Use estimated quantities like curvature, gradient, variances...

—®— Quadratic Mean/Std

Step 1: Construct a 1D
Gaussian Process (in the
descent direction).

575 = — Ot

Estimated f(6 + ad)

Q: Infer step size? q
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Adaptive Step Sizes through Acquisition Functions

Use estimated quantities like curvature, gradient, variances...

—®— Quadratic Mean/Std

Step 1: Construct a 1D
Gaussian Process (in the
descent direction).

575 = — Ot

Estimated f(6 + ad)

Q: Infer step size? q

«

=@ Quadratic Mean/Std
—@— Expected Improvement
—®— Prob. of Improvement

Step 2: Trade-off
automatically between
exploration and exploitation.

Estimated f(6 + )




Does it work?

Preliminary testing:

Noisy quadratic (toy):
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Gradient estimates are good:
(CIFAR10)
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Does |t WO rk? Noisy quadratic (toy): Gradient estimates are good:
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Does it work?

But on neural network training:

ResNet-32 on CIFAR-10

MLP on MNIST CNN on CIFAR-10
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Why Not?

We can self-diagnose using quantities estimating during training:
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- We dive into high-variance and high-curvature regions (because we can).

- Resulting in small step sizes and bad minima (because they exist).



Summary

- Build training dynamics model, with AD-estimated quantities.
- Perform inference, choose an acquisition function.
- Gol

Problems we saw:

- Model parameters are stochastic.
- Acquisition function has short-horizon bias.
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