Self-Tuning Stochastic Optimization with Curvature-Aware **Gradient Filtering**

Ricky T. Q. Chen, Dami Choi, Lukas Balles David Duvenaud, Philipp Hennig

University of Toronto and Max Planck Institute

Gradient noise \rightarrow Diffusion

Gradient noise \rightarrow Diffusion

Larger gradient noise

000

Roger Grosse @RogerGrosse

90% of all confusion about neural net training dynamics would vanish if everyone got used to thinking about and measuring neural net Jacobians, Hessians, Fisher information matrices, etc.

Gradient noise \rightarrow Diffusion

Can we create a *self-controlled / self-tuning* optimizer?

- Autodiff for estimating *curvature* and *variance*.
- Bayesian Inference within a gradient dynamics model.
- Automatic step sizes based on *exploration vs exploitation*.

Gradient Estimation as Posterior Inference

What this work is about:

View gradient observations as a dynamical system.

Infer full gradient from history of stochastic observations.

$$\min_{\theta} \mathbb{E}_{x} \left[f(\theta, x) \right] \qquad \nabla_{\theta} \mathbb{E}_{x} \left[f(\theta_{t+1}, x) \right] \\ \nabla_{\theta} f(\theta_{t}, x) \qquad \theta_{t+1} \qquad \nabla_{\theta} f(\theta_{t+1}, x) \\ \theta_{t+2} \qquad \theta_{t+2} \qquad \nabla_{\theta} \mathbb{E}_{x} \left[f(\theta_{t}, x) \right] \qquad \nabla_{\theta} \mathbb{E}_{x} \left[f(\theta_{t+2}, x) \right] \\ \nabla_{\theta} \mathbb{E}_{x} \left[f(\theta_{t}, x) \right] \qquad \nabla_{\theta} \mathbb{E}_{x} \left[f(\theta_{t+2}, x) \right]$$

Gradient Estimation as Posterior Inference

What this work is about:

View gradient observations as a dynamical system.

Infer full gradient from history of stochastic observations.

What this work is <u>not</u> about:

Bayesian neural networks.

$$\nabla_{\theta} \mathbb{E}_{x} \left[f(\theta_{t+1}, x) \right]$$
Track gradient?
$$7_{\theta} \mathbb{E}_{x} \left[f(\theta_{t}, x) \right]$$
Prediction?
$$\nabla_{\theta} \mathbb{E}_{x} \left[f(\theta_{t+2}, x) \right]$$

Constructing a Linear-Gaussian Dynamics Models

Notation:

Based on a Taylor expansion of the gradient:

$$\nabla f_t \approx \nabla f_{t-1} + H_t \delta_{t-1}$$

Constructing a Linear-Gaussian Dynamics Models

Notation:

Model uncertainty from update: $\nabla f_t | \nabla f_{t-1} \sim \mathcal{N}(\nabla f_{t-1} + B_t \delta_{t-1}, Q_t)$ $\underbrace{\text{Minibatch}}_{\text{Hessian-vector product}} \quad \underbrace{\text{Variance of minibatch}}_{\text{Hessian-vector product}}$

Constructing a Linear-Gaussian Dynamics Models

Notation:

Model uncertainty from update: $\nabla f_t | \nabla f_{t-1} \sim \mathcal{N}(\nabla f_{t-1} + B_t \delta_{t-1}, Q_t)$ $\underbrace{\text{Minibatch}}_{\text{Hessian-vector product}} \quad \underbrace{\text{Variance of minibatch}}_{\text{Hessian-vector product}}$

Model uncertainty from stochastic gradients:

$\rightarrow \nabla f_t | \nabla f_{t-1} \sim \mathcal{N}(\nabla f_{t-1} + B_t \delta_{t-1}, Q_t)$ $g_t | \nabla f_t \sim \mathcal{N}(\nabla f_t, \Sigma_t)$

We can perform exact inference:

- Filtering $p(\nabla f_t | g_t, \dots, g_0)$
 - (obtain low-variance gradients)

We can perform exact inference:

- Filtering $p(\nabla f_t | g_t, \dots, g_0)$
 - (obtain low-variance gradients)

$$\nabla f_t | \nabla f_{t-1} \sim \mathcal{N}(\nabla f_{t-1} + B_t \delta_{t-1}, Q_t)$$
$$g_t | \nabla f_t \sim \mathcal{N}(\nabla f_t, \Sigma_t)$$

Computing $p(\nabla f_t | g_t, \ldots, g_0)$ amounts to Kalman Filtering.

$$m_t^- = m_{t-1} + B_t \delta_{t-1}, \qquad P_t^- = P_{t-1} + Q_{t-1}$$

$$K_t = P_t^- (P_t^- + \Sigma_t)^{-1}$$

$$m_t = (I - K_t) m_t^- + K_t g_t, \qquad P_t = (I - K_t) P_t^- (I - K_t)^T + K_t \Sigma_t K_t^T$$

where m_t and P_t are defined:

Computing $p(\nabla f_t | g_t, \dots, g_0)$ amounts to Kalman Filtering.

$$m_t^- = m_{t-1} + B_t \delta_{t-1}, \qquad P_t^- = P_{t-1} + Q_{t-1}$$

$$K_t = P_t^- (P_t^- + \Sigma_t)^{-1}$$

$$m_t = (I - K_t) m_t^- + K g_t, \qquad P_t = (I - K_t) P_t^- (I - K_t)^T + K_t \Sigma_t K_t^T$$

Momentum-like update

where m_t and P_t are defined:

Computing $p(\nabla f_t | g_t, \dots, g_0)$ amounts to Kalman Filtering.

$$m_t^- = m_{t-1} + B_t \delta_{t-1}, \qquad P_t^- = P_{t-1} + Q_{t-1}$$

$$K_t = P_t^- (P_t^- + \Sigma_t)^{-1}$$

$$m_t = (I - K_t) m_t^- + K g_t, \qquad P_t = (I - K_t) P_t^- (I - K_t)^T + K_t \Sigma_t K_t^T$$

Curvature-corrected

Momentum-like update

where m_t and P_t are defined:

Computing $p(\nabla f_t | g_t, \dots, g_0)$ amounts to Kalman Filtering.

$$m_{t}^{-} = m_{t-1} + B_{t}\delta_{t-1}, \qquad P_{t}^{-} = P_{t-1} + Q_{t-1}$$

$$K_{t} = P_{t}^{-}(P_{t}^{-} + \Sigma_{t})^{-1}$$

$$m_{t} = (I - K_{t})m_{t}^{-} + Kg_{t}, \qquad P_{t} = (I - K_{t})P_{t}^{-}(I - K_{t})^{T} + K_{t}\Sigma_{t}K_{t}^{T}$$

Curvature-corrected

Momentum-like update

More weight on new gradient if its variance is relatively smaller where m_t and P_t are defined:

Computing $p(\nabla f_t | g_t, \dots, g_0)$ amounts to Kalman Filtering.

$$m_{t}^{-} = m_{t-1} + B_{t}\delta_{t-1}, \qquad P_{t}^{-} = P_{t-1} + Q_{t-1}$$

$$K_{t} = P_{t}^{-}(P_{t}^{-} + \Sigma_{t})^{-1}$$

$$m_{t} = (I - K_{t})m_{t}^{-} + Kg_{t}, \qquad P_{t} = (I - K_{t})P_{t}^{-}(I - K_{t})^{T} + K_{t}\Sigma_{t}K_{t}^{T}$$

Curvature-corrected

Momentum-like update

More weight on new gradient if its variance is relatively smaller Check out "Implicit Gradient Transport" (Arnold et al.)

where m_t and P_t are defined:

Estimating Variance with AutoDiff $\nabla f_t | \nabla f_{t-1} \sim \mathcal{N}(\nabla f_{t-1} + B_t \delta_{t-1}, Q_t)$ $g_t | \nabla f_t \sim \mathcal{N}(\nabla f_t, \Sigma_t)$

Quantities in blue are computed via *auto-vectorized* automatic differentiation.

Variances are estimated using a minibatch of gradients (or HVPs).

In various autodiff frameworks:

- JAX: jax.vmap
- Tensorflow: tf.vectorized_map
- PyTorch (incoming v1.8.0): torch.vmap

e.g. in JAX: var(vmap(grad(loss_fn(params, batch))))

For simplicity, Q_t and Σ_t are set to scalars.

$$\delta_t = -\alpha_t m_t$$

Q: Infer step size?

Use estimated quantities like curvature, gradient, variances...

$$\delta_t = -lpha_t m_t$$
 Q: Infer step size?

Use estimated quantities like curvature, gradient, variances...

 $\delta_t = -\alpha_t m_t$

Q: Infer step size?

Step 1: Construct a 1D

Gaussian Process (in the descent direction).

Use estimated quantities like curvature, gradient, variances...

$$\delta_t = -\alpha_t m_t$$

Step 1: Construct a 1D

Gaussian Process (in the descent direction).

Q: Infer step size?

<u>Step 2:</u> Trade-off automatically between exploration and exploitation.

Preliminary testing:

Noisy quadratic (toy):

Preliminary testing:

Noisy quadratic (toy): SGD (lr=0.01) 10² SGD (lr=0.001) SGD (adaptive) Function Value GD (lr=0.01) 10^{1} GD (adaptive) Meka (lr=0.01) 100 Meka (adaptive) 10-2 0 200 400 600 800 1000 Num steps

Gradient estimates are good: (CIFAR10)

Preliminary testing:

good:

But on neural network training:

Why Not?

We can self-diagnose using quantities estimating during training:

- We dive into high-variance and high-curvature regions (because we can).
- Resulting in small step sizes and bad minima (because they exist).

Summary

- Build training dynamics model, with AD-estimated quantities.
- Perform inference, choose an acquisition function.
- Go!

Problems we saw:

- Model parameters are stochastic.
- Acquisition function has short-horizon bias.

Summary

- Build training dynamics model, with AD-estimated quantities.
- Perform inference, choose an acquisition function.
- Go!

Amazing co-authors:

Lukas Balles

David Duvenaud

Philipp Hennig